51. If matrix \(A = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \) then \(A^3 \) is given by

(A) \(\begin{pmatrix} \cos 3x & \sin 3x \\ -\sin 3x & \cos 3x \end{pmatrix} \)

(B) \(\begin{pmatrix} \cos 2x & \sin 3x \\ -\sin 2x & \cos 3x \end{pmatrix} \)

(C) \(\begin{pmatrix} \cos 2x & \sin 3x \\ -\sin 3x & \cos 2x \end{pmatrix} \)

(D) \(\begin{pmatrix} \cos 3x & -\sin 3x \\ \sin 3x & -\cos 3x \end{pmatrix} \)

52. For what values of \(\alpha \), the rank of matrix

\[
A = \begin{bmatrix}
1 & 1 & -1 & 0 \\
4 & 4 & -3 & 1 \\
\alpha & 2 & 2 & 2 \\
9 & 9 & \alpha & 3
\end{bmatrix}
\]

is 3.

(A) \(\alpha = 6, -2 \)

(B) \(\alpha = -6, 2 \)

(C) \(\alpha = -3, 2 \)

(D) None of these

53. The approx. positive root of the equation:

\[x^3 - 12.2 \ x^2 + 7.45 \ x + 42 = 0 \]

lying between \(x = 11 \) and \(x = 12 \) by Regula Falsi method is given by

(A) 11.4994

(B) 11.1194

(C) 11.1994

(D) 11.9994

54. The matrix obtained by:

\[
\begin{pmatrix}
1 & -\tan x \\
tan x & 1
\end{pmatrix}
\]

is given by

(A) \(\begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} \)

(B) \(\begin{pmatrix} \cos 2x & \sin 2x \\ -\sin 2x & \cos 2x \end{pmatrix} \)

(C) \(\begin{pmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{pmatrix} \)

(D) \(\begin{pmatrix} \cos 3x & -\sin 3x \\ \sin 3x & -\cos 3x \end{pmatrix} \)
55. Using Runge Kutta (fourth order) method, where \(\frac{dy}{dx} = x + y \) and \(y(0) = 1 \), approximation to \(y(0.1) \) correct to five decimal places in steps of \(h = 0.1 \) is given by option:

(A) 2.11133
(B) 1.11034
(C) 1.21135
(D) 1.23230

56. Determine \(\lambda \) and \(\mu \) such that the equations

\[
\begin{align*}
x + y + z &= 6, \\
x + 2y + 3z &= 10, \\
x + 2y + \lambda z &= \mu
\end{align*}
\]

have infinite number of solutions.

(A) \(\lambda = 3, \mu \neq 10 \)
(B) \(\lambda = -3, \mu = -10 \)
(C) \(\lambda = 3, \mu = 10 \)
(D) \(\lambda \neq 3 \) and \(\mu \) can have any value

57. If \(\phi(x, y, z) = 3x^2y - y^3z^2 \), value of grad. \(\phi \) at the point \((1, -2, -1)\) is given by

(A) \(-12i + 9j - 16k\)
(B) \(12i - 9j - 6k\)
(C) \(-12i - 9j - 16k\)
(D) None of these

58. The rank of matrix

\[
A = \begin{bmatrix}
5 & 6 & 7 & 8 \\
6 & 7 & 8 & 9 \\
11 & 12 & 13 & 14 \\
16 & 17 & 18 & 19
\end{bmatrix}
\]

is given by

(A) 2
(B) 3
(C) 4
(D) None of these

59. The \(n^{th} \) derivative of the function \(y = x^4/(x-1)(x-2) \) is

(A) \((-1)^n n! \left[\frac{16}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right] (n > 2)\)
(B) \(n! \left[\frac{16}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right] (n > 0)\)
(C) \((-1)^n \left[\frac{16}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right] \)
(D) \((-1)^n+1 n! \left[\frac{16}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right] (n > 2)\)
60. For the matrix \(A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \), find the matrix represented by \(A^8 - 5A^7 + 7A^6 - 3A^5 - 5A^3 + 8A^2 - 2A + I \).

(A) \(\begin{pmatrix} 8 & 4 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 9 \end{pmatrix} \)

(B) \(\begin{pmatrix} 8 & 5 & 1 \\ 6 & 3 & 0 \\ 5 & 5 & 8 \end{pmatrix} \)

(C) \(\begin{pmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{pmatrix} \)

(D) None of these

62. The nature of an infinite series \(\sum \log \frac{n}{n+1} \) is said to be

(A) convergent

(B) absolute convergent

(C) divergent

(D) conditional convergent

63. A unit vector normal to the surface \(x^3 + y^3 + 3xyz = 3 \) at the point (1, 2, -1) is given by

(A) \(\frac{1}{\sqrt{11}} (-i + 3j - k) \)

(B) \(i - j + k \)

(C) \(\frac{1}{\sqrt{3}} (i + k) \)

(D) None of these

64. The eigen values of the following matrix

\[
\begin{bmatrix}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{bmatrix}
\]

are given by solving the cubic equation

(A) \(\lambda^3 + 2\lambda^2 + 2\lambda - 13 = 0 \)

(B) \(\lambda^3 - 6\lambda^2 + 9\lambda - 4 = 0 \)

(C) \(\lambda^3 + 7\lambda^2 + 2\lambda - 7 = 0 \)

(D) \(\lambda^3 - 6\lambda^2 + 12\lambda + 12 = 0 \)
65. If \(A = \begin{pmatrix} 1 & 2 \\ 5 & 7 \end{pmatrix} \), then \(A^{-1} \) is given by

(A) \(\frac{1}{3} \begin{pmatrix} -7 & 2 \\ 5 & -1 \end{pmatrix} \)

(B) \(\frac{1}{3} \begin{pmatrix} 7 & 2 \\ 5 & 1 \end{pmatrix} \)

(C) \(\begin{pmatrix} -7 & 2 \\ 5 & -1 \end{pmatrix} \)

(D) None of these

66. The quadratic form corresponding to the matrix \(A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 0 & 3 \\ 5 & 3 & 4 \end{bmatrix} \) is given by

(A) \(x_1^2 + 4x_2^2 + 4x_1x_2 + 10x_1x_3 + 3x_2x_3 \)

(B) \(x_1^2 + 4x_3^2 + 4x_1x_2 + 10x_2x_3 + 6x_2x_3 \)

(C) \(x_1^2 - 4x_3^2 + 4x_1x_2 + 10x_1x_3 + 6x_2x_3 \)

(D) \(x_1^2 + 4x_3^2 + 4x_1x_2 + 10x_1x_3 + 6x_2x_3 \)

67. The infinite series
\[
1 + \frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \frac{3.6.9.12}{7.10.13.16}x^4 + \ldots \infty
\]
is said to be convergent for

(A) \(|x| > 1 \)

(B) \(x < 1 \)

(C) \(|x| > -1 \)

(D) \(x < 2 \)

68. If \(y = \cos (m \sin^{-1} x) \), which is correct

(A) \((1-x^2)y_{n+2} - (2n+1)xy_{n-1} \)

(B) \((1-x^2)y_{n+2} - (2n+1)x_{n+1} \)

(C) \((1-x^2)y_{n+2} - (2n+1)x_{n+1} \)

(D) \((1-x^2)y_{n+2} - (2n+1)x_{n+1} \)

69. Given that \(f(u, v, w) \) is a differentiable function with \(u = x-y, \ v = y-z, \ w = z-x \), the value of \(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \) is given by

(A) 0

(B) 1

(C) −1

(D) None of these

70. For what value of \(a \) and \(b \), the following function is everywhere differentiable for the function given by
\[
f(x) = \begin{cases}
 x^2 + 3x + a, & \text{for } x \leq 1 \\
 bx + 2, & \text{for } x > 1
\end{cases}
\]

(A) \(a = 3, \ b = 4 \)

(B) \(a = 3, \ b = 5 \)

(C) \(a = 2, \ b = 5 \)

(D) \(a = -3, \ b = -5 \)
71. For the functions \(f(x) = x^3 + 2 \) and \(g(x) = x^2 - 1 \) in the interval \([0, 1]\), the value of \(c \) for Cauchy's Mean Value theorem is given by

(A) \(c = 12/9 \)

(B) \(c = 14/6 \)

(C) \(c = 1/9 \)

(D) \(c = 14/9 \)

72. Using the expansion of \(\tan (x + h) \), the value of \(\tan 46^\circ \) correct to 4 significant figures is (where \(\pi = 3.14159 \))

(A) 0.5151

(B) 1.5051

(C) 1.1131

(D) 1.0355

73. The system

\[
\begin{align*}
x + 2y - 3z &= -1 \\
3x - y + 2z &= 7 \\
5x + 3y - 4z &= 2
\end{align*}
\]

is

(A) Inconsistent

(B) Consistent with trivial solution

(C) Consistent with unique solution

(D) Consistent with more than one solution

74. The expansion of \(f(x, y) = e^x \cos y \) about the point \((0, 0)\) is given by

(A) \(1 - x + \frac{1}{2} [x^2 + y^2] + \frac{1}{6} [x^3 - 3y^2x] + ... \)

(B) \(1 + x + \frac{1}{2} [x^2 - y^2] + \frac{1}{6} [x^3 - 3y^2x] + ... \)

(C) \(1 + x - \frac{1}{2} [x^2 - y^2] + \frac{1}{9} [x^3 - 3y^2x] + ... \)

(D) None of these

75. The main difference between Jacobi's and Gauss-Seidal Method is

(A) Deviation from the correct answer is more in Gauss-Seidal

(B) Convergence in Jacobi's method is faster

(C) Computations in Jacobi's can be done in parallel but not in Gauss-Seidal

(D) Gauss-Seidal can solve the system of linear equations in three variables whereas Jacobi cannot

76. Given that \(u = \tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right) \), the value of \(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \) is given by

(A) \(\sin u \)

(B) \(\sin 2u \)

(C) \(\sin 3u \)

(D) \(\tan u \)
77. Value of \(\int_0^{2\pi} \frac{1}{2 + \cos \theta} \, d\theta \) is given by the option:
(A) \(\frac{2\pi}{3} \)
(B) \(\frac{\pi}{2} \)
(C) \(\frac{2\pi}{\sqrt{3}} \)
(D) \(\frac{3\pi}{\sqrt{2}} \)

78. If \(\frac{dy}{dx} = -\frac{F_x}{F_y} \) and \(\frac{d^2y}{dx^2} = -(F_{xx} F_y^2 - p F_x F_y) F_y \), given that the equation \(F(x, y) = 0 \) defines \(y \) implicitly as a differentiable function of the independent variable \(x \) and \(F_y \neq 0 \), then value of \(p \) is given by:
(A) 3
(B) 2
(C) -2
(D) 1

79. The solution of \((y^3 + 2y)dx + (x^3 + 2y^4 - 4x)dy = 0\) is given by:
(A) \(x\left(y + \frac{2}{y^2}\right) + y^3 = c \)
(B) \(x\left(y + \frac{2}{y^2}\right) + y^2 = c \)
(C) \(x\left(y + \frac{1}{y^2}\right) + y^2 = c \)
(D) \(y\left(y + \frac{2}{y^2}\right) + y^2 = c \)

80. The residue at each pole of the function \(f(z) = \cot z \) is given by:
(A) 4
(B) 2
(C) 0
(D) 1

81. The Particular Integral of the equation:
\[(D^3 - 7D^2 + 10D)y = e^{2x} \sin x\]
is given by:
(A) \(\frac{e^x}{50} (7 \cos x - \sin x) \)
(B) \(\frac{e^{2x}}{50} (7 \cos x - \sin x) \)
(C) \(\frac{e^{2x}}{50} (7 \cos x + \sin x) \)
(D) \(\frac{e^{2x}}{5} (7 \cos x + \sin x) \)

82. The value of \(\int_C \frac{1}{z^2 - 1} \, dz \), where \(C \) is the circle \(|z| = 2 \) is:
(A) 0
(B) 2
(C) 3/4
(D) 2
83. If \(\phi(x, y) = \frac{x}{x^2 + y^2} \), the magnitude of the directional derivative along a line making an angle \(30^\circ \) with the positive direction of x-axis at point \((0, 2)\) is given by

(A) \(\frac{\sqrt{5}}{8} \)

(B) \(\frac{1}{\sqrt{2}} (i + k) \)

(C) \(\frac{\sqrt{3}}{8} \)

(D) \(\frac{\sqrt{3}}{8} i \)

84. In which option, algebraic structure is not semi group

(A) \((N, +)\)

(B) \((Z, −)\)

(C) \((N, +), (Z, −)\)

(D) None of these

85. The mobius transformation which maps the points \(z = −i, 0, i \) into the points \(w = −1, i, 1 \) respectively is given by

(A) \(w = \frac{-iz + i}{z + 2} \)

(B) \(w = \frac{iz + i}{z + 1} \)

(C) \(w = \frac{-iz + i}{z + 1} \)

(D) \(w = \frac{-iz + i}{z - 1} \)

86. The \(n^{th} \) derivative of \(y = x^{n−1} \log x \) is given by

(A) \(\frac{n!}{x} \)

(B) \(\frac{(n+1)!}{x} \)

(C) \(\frac{(n−1)!}{x} \)

(D) \(\frac{(n−1)!}{2x} \)

87. By method of variation of parameters, the solution of equation \(y'' + y = \cosec x \) is given by

(A) \(A \cos x + B \sin x - (x \sec x + \log \tan x) \)

(B) \(A \cos x + B \sin x + x \cos x + \sin x \log \sin x \)

(C) \(A \cos x - B \sin x - \cos x \log (\sec x \cdot \tan x) \)

(D) \(A \cos x + B \sin x - x \cos x + \sin x \log \sin x \)

88. Using Green's theorem, value of

\[\int_c (x^2 + xy)dx + (x^2 + y^2)dy \]

where \(c \) is the square formed by the lines \(y = ± 1, x = ± 1 \).

(A) \(\frac{3}{8} \)

(B) \(\frac{5}{12} \)

(C) 1

(D) 0
89. The solution of equation by method of separation of variables, where \(\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u \) and given that \(u(x, 0) = 6e^{-3x} \) is given by
(A) \(u = 6e^{-3x-3y} \)
(B) \(u = 6e^{3x} + 2y \)
(C) \(u = 6e^{-3x-2t} \)
(D) \(u = 6e^{-3x+2t} \)

90. The Particular integral of the differential equation:
\[
(D^2 + DD' - 6D^2)z = x^2 \sin (x + y)
\]
is given by
(A) \(\frac{1}{4} \left(x^2 + \frac{13}{8} \right) \sin (x + y) + \frac{3x}{8} \cos (x + y) \)
(B) \(\frac{1}{4} \left(x^2 - \frac{13}{6} \right) \sin (x + y) - \frac{13x}{8} \cos (x + y) \)
(C) \(\frac{1}{4} \left(x^2 - \frac{13}{8} \right) \sin (x + y) - \frac{3x}{8} \cos (x + y) \)
(D) \(\frac{1}{4} \left(x^2 - \frac{13}{8} \right) \cos (x + y) - \frac{13x}{8} \sin (x + y) \)

91. The Particular integral of the differential equation:
\[
(D^3 + 2D^2 + D)y = e^{2x} + x^2 + x
\]
is given by
(A) \(\frac{1}{18} e^{2x} + \frac{1}{3} x^3 - \frac{3}{2} x^2 + 4x \)
(B) \(\frac{1}{18} e^{2x} + \frac{5}{3} x^3 - \frac{3}{2} x^2 + 4x \)
(C) \(\frac{1}{18} e^{2x} + \frac{1}{3} x^3 - \frac{3}{2} x^2 + 3x \)
(D) \(\frac{1}{18} e^{2x} + \frac{1}{3} x^3 - \frac{3}{5} x^2 + 4x \)

92. A vector field \(F \) is given by \(F = (\sin y)i + x (1 + \cos y)j \), then value of integral \(\int_C F.d\bar{r} \)

Where \(C \) is the circular path given by \(x^2 + y^2 = a^2 \)
(A) \(3 \pi a^2 \)
(B) \(2 \pi a^2 \)
(C) \(\pi a^2 \)
(D) \(\frac{1}{2} \pi a^2 \)

93. The two regression equations of the variables \(x \) and \(y \) are \(x = 19.13 - 0.87y \) and
\(y = 11.64 - 0.50x \), the correlation coefficient between \(x \) and \(y \) is given by
(A) \(-0.26\)
(B) \(-0.36\)
(C) \(-0.66\)
(D) \(0.66\)

94. The Particular integral of \((D^2 - D'^2)z = \cos (x + y) \) is given by
(A) \(\frac{x}{2} \cos (x + y) \)
(B) \(x \sin (x + y) \)
(C) \(2x \sin (x + y) \)
(D) \(\frac{x}{2} \sin (x + y) \)
95. If \(z = xf(y/x) + g(y/x) \), then value of
\[
\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2}
\] is given by

(A) \(\frac{-x}{y} \frac{\partial u}{\partial y} \)

(B) \(-1\)

(C) \(0\)

(D) None of these

96. The analytic function whose imaginary part is \(e^{-x} (x \sin y - y \cos y) \), is given by

(A) \(f(z) = e^{-z} (-z) + c \)

(B) \(f(z) = e^{-z} (z) + c \)

(C) \(f(z) = e^{z} (-z) + c \)

(D) \(f(z) = e^{-2z} (-z) + c \)

97. If the variance of the poisson distribution is 2 and given : \(e^{-2} = 0.1353 \), the value of \(P(r \geq 4) \) using recurrence relation of the poisson distribution is

(A) 0.1321

(B) 0.3613

(C) 0.1431

(D) None of these

98. A can hit a target 3 times in 5 shots, B 2 times in 5 shots and C 3 times in 4 shots. All of them fire one shot each simultaneously at a target. What is the probability that at least two shots hit the target?

(A) \(\frac{69}{100} \)

(B) \(\frac{9}{20} \)

(C) \(\frac{63}{100} \)

(D) \(\frac{18}{100} \)

99. The algebraic structure \((Q, +, \cdot) \), \((R, +, \cdot) \) represent

(A) Ring

(B) Field

(C) Group

(D) Commutative ring with unity

100. The solution of partial differential equations:
\[
x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)
\] is given by

(A) \(F(xyz, x^2 + y^2 + z^2) = 0 \)

(B) \(F(xyz, x^2 - y^2 - z^2) = 0 \)

(C) \(F(1/(xyz), x^2 + y^2 + z^2) = 0 \)

(D) None of these.
ROUGH WORK
ROUGH WORK
ROUGH WORK
Answer Key: Maths

<table>
<thead>
<tr>
<th>Q No</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>A</td>
</tr>
<tr>
<td>52</td>
<td>B</td>
</tr>
<tr>
<td>53</td>
<td>C</td>
</tr>
<tr>
<td>54</td>
<td>A</td>
</tr>
<tr>
<td>55</td>
<td>B</td>
</tr>
<tr>
<td>56</td>
<td>C</td>
</tr>
<tr>
<td>57</td>
<td>C</td>
</tr>
<tr>
<td>58</td>
<td>A</td>
</tr>
<tr>
<td>59</td>
<td>A</td>
</tr>
<tr>
<td>60</td>
<td>C</td>
</tr>
<tr>
<td>61</td>
<td>C</td>
</tr>
<tr>
<td>62</td>
<td>C</td>
</tr>
<tr>
<td>63</td>
<td>A</td>
</tr>
<tr>
<td>64</td>
<td>B</td>
</tr>
<tr>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>66</td>
<td>D</td>
</tr>
<tr>
<td>67</td>
<td>B</td>
</tr>
<tr>
<td>68</td>
<td>D</td>
</tr>
<tr>
<td>69</td>
<td>A</td>
</tr>
<tr>
<td>70</td>
<td>B</td>
</tr>
<tr>
<td>71</td>
<td>D</td>
</tr>
<tr>
<td>72</td>
<td>D</td>
</tr>
<tr>
<td>73</td>
<td>A</td>
</tr>
<tr>
<td>74</td>
<td>B</td>
</tr>
<tr>
<td>75</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q No</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>B</td>
</tr>
<tr>
<td>77</td>
<td>A</td>
</tr>
<tr>
<td>78</td>
<td>B</td>
</tr>
<tr>
<td>79</td>
<td>B</td>
</tr>
<tr>
<td>80</td>
<td>D</td>
</tr>
<tr>
<td>81</td>
<td>C</td>
</tr>
<tr>
<td>82</td>
<td>A</td>
</tr>
<tr>
<td>83</td>
<td>C</td>
</tr>
<tr>
<td>84</td>
<td>B</td>
</tr>
<tr>
<td>85</td>
<td>C</td>
</tr>
<tr>
<td>86</td>
<td>A</td>
</tr>
<tr>
<td>87</td>
<td>D</td>
</tr>
<tr>
<td>88</td>
<td>D</td>
</tr>
<tr>
<td>89</td>
<td>C</td>
</tr>
<tr>
<td>90</td>
<td>C</td>
</tr>
<tr>
<td>91</td>
<td>A</td>
</tr>
<tr>
<td>92</td>
<td>C</td>
</tr>
<tr>
<td>93</td>
<td>C</td>
</tr>
<tr>
<td>94</td>
<td>D</td>
</tr>
<tr>
<td>95</td>
<td>C</td>
</tr>
<tr>
<td>96</td>
<td>A</td>
</tr>
<tr>
<td>97</td>
<td>C</td>
</tr>
<tr>
<td>98</td>
<td>C</td>
</tr>
<tr>
<td>99</td>
<td>D</td>
</tr>
<tr>
<td>100</td>
<td>A</td>
</tr>
</tbody>
</table>